	1111					
Course Code	194601B	Year	III	Semester	Π	
Course Category:	Program Elective	Branch	ME	Course Type	Theory	
Credits:	3	L - T - P	3 - 0 - 0	Prerequisites:	Nil	
Continuous Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100	

MECHANICALVIBRATIONS

Cours	Course Outcomes				
Upon	successful completion of the course, the student will be able to				
CO1	Analyze single degree freedom system for its natural frequency and vibration	L3			
	response.				
CO2	CO2 Analyze single degree freedom system for its natural frequency and damped I				
	vibration response				
CO3	determine response of Single degree freedom systems under harmonic	L3			
	excitations				
CO4	Determine the response of Two-degree freedom systems under free and	L3			
	forcedvibrations				
CO5	CO5 Derive the equation of motion and find the natural frequencies mode shapes of a				
	multi degree offreedom system				

Course Articulation Matrix:

	Contribution of Course Outcomes towards achievement of Program Outcomes Strength of correlations (3: High, 2: Moderate, 1: Low)													
	Stre	ngth o	f corre	elation	ıs (3: 1	High, 1	2: Mo	derate	e, 1: Lo	ow)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	1									3	1
CO2	3	3	1	1									3	1
CO3	3	3	1	1									3	1
CO4	3	3	1	1									3	1
CO5	3	3	1	1									3	1

	Course Content			
UNIT-1	Undamped free vibrations of SDOF Systems: Introduction, basic concepts of vibration, importance of vibration study, elements of a vibrating system,types of vibration,methods of vibration analysis, harmonic motion,Equationof motion, free vibration of undamped translational system, freevibration of undamped torsionalsystem, Raleigh's energy method.			
UNIT-2	Damped free vibrations of SDOF Systems: introduction, types of damping, free vibration with viscous and coulomb damping, logarithmic decrement.	CO 2		
UNIT-3	Harmonically ExitedVibrations: Introduction, equations of motion, response of undamped and damped systems under harmonic excitation, response of a damped system under harmonic motion of the base,	CO3		

	response of a damped system under rotating unbalance, vibration, measuring instruments-vibrometer and accelerometer, critical speed	
UNIT-4		CO4
UNIT-5	Multi-degree of Freedom Systems : Introduction, modeling of continuous systems as multi degree of freedom systems, using Newton's second law to derive equations of motion, influence coefficients, Determination of natural frequencies and mode shapes.	CO5

	Learning Resources					
Text	1. S.S.Rao, Mechanical Vibrations, 5/e, Pearson Education Inc., 2011.					
Books:	G. K. Grover, Mechanical Vibrations, 8/e, Nem Chand & Bros					
Reference	1. L.Meirovich, Elements of Vibration Analysis, 2/e. TataMcGrawHill, 2007.					
Books:	2. J.S.RaoandK.Gupta,IntroductoryCourseonTheoryandPracticeofMechanicalVi					
	brations,2/e,NewAgeInternational,1999.					
E-	1. https://nptel.ac.in/courses/112/103/112103112/					
Resources	2.https://nptel.ac.in/courses/112/103/112103111/					
& other						
digital						
Material:						